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THERMOELASTICITY OF HETEROGENEOUS ORTHOTROPIC
CYLINDRICAL SHELLS

Y. STAVSKY and I. SMOLASH

Department of Mechanics, Technion-Israel Institute of Technology, Haifa, Israel

Abstract-The axisymmetric linear quasi-static thermoelastic equations for composite orthotropic cylindrical
shells are solved in closed form for fixed-end boundary conditions.

The case ofsemi-infinite shell is explicitlyevaluated and various combinations oflaminated shells are examined.
It is shown that (1) shell heterogeneity, or the layer reversal effect for two-layer shells, may significantly affect
the stress field obtained and its level; (2) the combined action of the composed layers transcends the sum of
the individual properties and provides, in many cases, new performance unattainable by the constituents when
acting as homogeneous shells; (3) a cross-thermoelastic effect is exhibited by the stress distribution for the
considered composite shells.
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radius of reference surface of shell
notation of orthotropic layers in relations (60)
elastic area defined in equation (9)
modified extensional rigidity
constant defined in equation (48)
notation of orthotropic layers in relations (60)
constants in equation (40.1)
elastic statical moment defined in equation (9)
extensional-flexural coupled rigidity
constant defined in equation (44.1)
notation of isotropic layer in relations (61)
constants in equation (40.2)
constant defined in equation (44.2)
notation of isotropic layer in relations (61)
elastic moment of inertia defined in equation (9)
modified flexural rigidity
subscript denoting externa/layer
notation of isotropic layer in relations (61)
Young's modulus
elastic stiffness modulus
function defined in equation (29)
constants defined by expressions (36), (37) respectively
decay factor in equation (25)
= h, + hz, shell thickness, sum of distances to bounding surfaces
subscript, subscript denoting intema/layer in expression for thermal field
subscript
composite shell parameter defined in equation (20)
thermal conductivity in j direction
parameter defined in equation (30)
functional operator defined in equations (16), (17)
axial and circumferential bending moments, respectively
thermal quantities defined in equation (10)
axial and circumferential forces, respectively
thermal quantities defined in equation (10)
subscript denoting particular solution in equation (40)
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transverse shear force
radial coordinate
thermal quantities defined in equations (18), (19)
temperature change from initial stress-free state
constants in expression (33) for the temperature
radial and axial displacements, respectively
axial coordinate
thermal expansion in i direction
thermoelastic coefficient defined in equation (2)
slope angle of shell generator
parameters defined in equations (43)
strain
thickness coordinate, taken positive inward
circumferential direction
curvature change
Poisson's ratio
non-dimensional axial coordinate
stress
functions defined in equations (41)
stress resultant function defined in equation (14.3)

1. INTRODUCTION

THE formulation of the thermoelastic equations of homogeneous media goes back to
Duhamel [1,2] and Neumann [3], about the earlier part of the nineteenth century. Since
then substantial efforts have been put in developing the field of thermoelasticity, the results
of which are summarized in numerous papers and books, see e.g. the texts by Melan and
Parkus [4], Parkus [5], Boley and Weiner [6] and Nowacki [7].

A thermoelastic theory for homogeneous shells of revolution was established by
Parkus [8] when the thermal field is axisymmetric and independent of the stress field.

A general quasi-static thermoelastic theory for heterogeneous shells of revolution
undergoing symmetrical deformations was recently given by Stavsky [9], assuming that
their elastic and thermal properties are rotationally orthotropic.

In what follows Stavsky's [9] equations are specialized for the case of cylindrical
shells, solutions for certain thermoelastic problems are obtained and several examples of
interest are shown.

2. FORMULATION OF THERMOELASTIC PROBLEM
Consider a thin circular cylindrical shell of constant thickness h that is heterogeneous

in its thickness direction (. The reference cylindrical surface, defined by the radius a,
is not necessarily taken to be located at mid thickness of shell. A similar assumption was
made in the analysis of plates of variable thickness [10] and of heterogeneous shallow
shells [11]. The non-dimensional axial coordinate is denoted by ~ = z/a whereas () desig­
nates the circumferential direction (see Fig. 1).

Thermoelastic stress-strain relations

The shell material is assumed to be rotationally orthotropic and so the following
Duhamel-Neumann law holds

(1)
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'O=Q

FIG. 1. Cylindrical shell convention.

where the thermal coefficients Ai are given in terms of the elastic stiffnesses Eij and the
coefficients of thermal expansion (Xi by the relations:

It is noted that in view of shell heterogeneity

(2)

Ai = Ai(r) (i,j = ~,O) (3)

and that 1; the change in temperature from the intitial stress-free state, is a given function
of ~ and (.

The thermal field throughout the shell, which is assumed to be uncoupled with the
stress field, is determined by the heat conduction law of Fourier for anisotropic media
as given, e.g. in Eringen's [12) monograph. Furthermore, the analysis is restricted to the
case where the thermoelastic field is axisymmetric and so the shear stress r~o vanishes
identically.

Shell stress-strain relations

Defining reference surface strains, at ( = 0, and curvature changes as in Stavsky's [9]
paper on axisymmetric deformations of heterogeneous shells of revolution, we write:

(4)

where for a small deflections theory of cylindrical shells

s~o = w'ja,

K~ = p'ja,

eoo = uja

K(J = 0.

(5)

(6)

The radial and axial displacement components are designated, respectively, by u and
W, whereas Pdenotes the slope of the shell generator due to deformation. Primes indicate
differentiation with respect to the non-dimensional axial coordinate e.
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Stress resultants and moments are defined by the following integrals over the sheil
thickness

t- +h,

(M~, Mo) = j -([~, [oK d(
-11 1

which are written, in view of equations (1), in the form:

N~-NI'.T An A~o B" B~o I:~oc, ~I.,.

No-NoT Aw Aoo Bl'o Boo 1:00

M~-Ma B" B~o Dc.c, Di'o K,
"

,

Mo-MoT Bl'o Boo Deo Doo Ko

(8)

(91(i,j = ~,O)

The elastic coefficients Aij, Bij, Dij and the thermoelastic quantities NiT, M r[ are de­
fined by the following integrals:

r
+h,

(A ij , B ij , Di;l = - (1,(, (Z)Eijd(
.- h,

,. + hJ

(NiT, MiT) = J -(1,OA iTd(
h,

(i = ~,O). (10)

The bounding surfaces of the shell are denoted by hi and hz, and the sign convention
for stress resultants and couples is shown in Fig_ 1.

Small deflections theory

The equations for small deflections of heterogeneous orthotropic circular shells are
obtained by setting in the general equations (8A) and (8.5) of Ref. [9J

r = a, z = a~, ex = a, sin ¢ = 1, cos ¢ = 0,
IT

<D =~-/j (11 )

which now become, after linearization

Dti'IJ" - Bti''P'' +a'P = - a(BteN~T+ Bti'N~T + M~T)

Bti'{3" - afJ + Ato 'P" = a(AtI'N~T + AtoN~T)

(12)

(13 )

for the case that only thermal loads are present. The asterisked elastic coefficients are
given in terms of the unasterisked coefficients through equations (7.8) of Ref. [9].

The stress resultants and moments are expressed in terms of the stress function 'P
and the change of slope, {3, of shell generator, as follows:

aNo = 'P'

[
-B*.,.,."
-B!o

aQ = -'P

-Btl' NI'
-Bto i Dte

l ::=::~J~c

Ko

(14)

(15)
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(17)

For the detailed derivation one may wish to consult Section 5 ofthe chapter by Stavsky
and Hoff [13].

Linear theory in terms of two single equations for {3 and 'P
The simultaneous thermoelastic equations (12) and (13) for {3 and 'P are further trans­

formed to two single uncoupled equations:

a aZ 1
L{3 = {3IV -2Bk/l"-/:{3 = k(Aloat'{ +Bl~at2 -aZtz) (16)

L'P 'PIV 2B* a'P" aZ'P 1( B*" Z D* ")= - o~k +T = k - o~atl +a t l + ~~atz

where the thermal quantities t l and tz are given in terms of N~T' NOT and M~T by the
following expressions:

t 1 = - Bt~N~T - Bl~NOT - M~T

tZ = Al~N~T+AloN oT.

The coupled extensional-bending parameter k is defined by:

k = AloDt~ +Btl

(18)

{19)

(20)

and is independent of the location of the reference surface. This property of k becomes
obvious in view of the invariance properties of the A*, B* and D* matrices as established
by Stavsky and Friedland [14].

Boundary conditions

The conditions at a boundary e= eb are generally three:

u = u or Q = i2 (21)

{3 = p or M~ = M~ (22)

w = w or N~ = N~. (23)

In the case of a semi-infinite shell it would be required that the stresses and displacements
are bounded as e-+ 00.

3. SOLUTION FOR SEMI-INFINITE SHELLS

Thermal field

Consider a semi-infinite composite orthotropic cylindrical shell subject to the following
steady state thermal boundary conditions

1;, = T~ at (= - hI for any e
7;=T~-(T~-T?)e-g~ at (= +hz forany e

(24)

(25)

where the shell external and internal temperatures at e= 0 are denoted by T~, T?, re­
spectively, and g is a given decay factor. (See Fig. 2).
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FIG. 2. Semi-infinite two-layer cylindrical shell with temperature distribution.

(26)

(27)

The thermal field is obtained by solving the steady state heat conduction equation for
a solid with cylindrical orthotropy, as given in Carslaw and Jaeger's [15J text

1 . 1
Kr(rT"),, + -2 KeT,ee+ K= T,== = 0

r r

where K" Ke, Kz are the thermal conductivities in the radial, circumferential and axial
directions, respectively, of the cylindrical shell.

In view of the axisymmetric boundary conditions (24) and (25) the thermal field is
independent of the circumferential coordinate () and so T = T(r, z). If furthermore K"
is negligibly small as compared to K r then equation (26) simplifies as follows:

1
Kr(rT"),, = O.

r

The thermal field so obtained is given by

T To+(T~-T?)2-R~f(O (28)

where the temperature at the reference ( = 0 is denoted by To and the variation of T
across the shell thickness is specified by the function

j = c for 0 < ( < hz
(29)

j = i for - h1 < ( < 0

for a two-layer cylindrical shell.
The coefficient K is of the form

K = Kre In(a/ri)+Kri In(re/a) (30)

where K re and K ri are the thermal conductivities in the thickness direction for the external
and internal layers, respectively. The internal and external radii of the composite shell
are expressed in terms of radius of the reference surface and the layers' dimensions:

ri = a-hz, (31 )
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(32)

To is given by the following expression:

To = T~ -(T~ - T?) e-g~ ~Kr; In(re/a).

The temperature distribution, given by equations (28), (32), is conveniently expressed
in terms of the constants T1 , T2 and T3 :

(33)

where

(34)

Solution of differential equations

For the thermal field as specified by expression (33) the shell thermoelastic equations
(16) and (17) are written in the following form:

Lf3 = FfJ e-g~, VI' = F", e-g~ (35)

where

F a2 3 [1 A* (B* N(2) B* N(2) +M(2)) ( 1B* 1 ) (A* N(2) A* N(2))] (36)
fJ = k g ~ 99 ~~ ~T + 9~ 9T ~T + - ~ 9~ +g2 9~ ~T + 99 9T

F a2 3[( 1 B* 1 ) (B* N(2) B* N(2) M(2)) 1 D* (A* N(2) A* N(2))] (37)'" = kg - ~ 9~ +g2 ~~ ~T + 9~ 9T + ~T - ~ ~~ 9~ ~T + 99 9T

and the thermal quantities Nl}> and Ml}> are related to NiT and MiT through the ex­
pressions:

where

NiT = MP+MPe-g~, (i = ~,O) (38)

f
+h2

(MP, M~P) = T1 (1, ()A i de
-hi

(MP, M~P) = T2 f:h~2 (1, ()A; d( + T3f:h~2 (1, ()AJ(() d( (i = ~,O). (39)

The complete solution of the differential equations (16) and (17), satisfying regularity
conditions at ~ = 00, is given by the following formulas for f3 and 'P:

f3 = B 1<1>1 +B 2<1>2 + f3p, 'P = C1<1>l +C2<1>2+'Pp (40)

where

<1>1 = e- Yl~ cos Y2~' <1>2 = e-Yl~ sin Y2~ (41)

f3p = f3po e-g~, 'Pp = 'Ppoe-g~. (42)

The non-dimensional parameters Y1 and Y2 are defined as:

2yf = d-c, 2y~ = d+c (43)
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c = B:"a/k, d = vik.

The values at ~ = 0 of the particular solutions for fj and lJI are expressed in the form

fJ po = Fp(g4 + 2cg2+ iPr I, lJI pO = F'l'(g4 + 2cg2+ il 2 ) - I (45i

Note that due to the coupling of fj and lJI, as clearly exhibited by the two simultaneous
equations (12) and (13), the constants B 1 ,B2 ,C 1 and C 2 are interrelated and the tWl)
boundary conditions (21) and (22) arc sufficient for their unique determination. In view
of the linearized version of the system of equations (12) and (13) one finds

and consequently
he 2 ,

where

Boundary conditions

Consider the boundary conditions of type (21) and (22) in the specific form:

(46)

(47)

(48)

u = 0, fj = 0 at c = 0 (49)

which uniquely determine the constants in equations (40). As for the boundary conditions
of type (23) it is assumed that

N ~ = 0 at ~ = 0; It' = 0 at ~ = ex (50)

which in view of the shell equilibrium equations in the ~-direction,equation (5.5) of Ref. [9],
yields the result

whereas
through the cylindrical shell (51 )

(52)

The axial strain D~o is expressed in terms of the functions fj and lJI by using the first of
equations (7.6) as given in Ref. [9J:

(53)

and the constant of integration in equation (52) is to be determined by the boundary
condition (50.2). Note that the vanishing of N ~ for the considered shell is independent of
the boundary conditions (21), (22) whereas w is readily determined when fj and lJI are
known.

The constants in equations (40) are as follows:

B 1 = - fJpo (54)

C 1 = [A:~(NW+NW)+A:II(NW+NW)-(fJpoja)(Bt'~'1 + Atlll'2jb)

+ (gja)(AtelJl po + Bt,fJpo)] x [( - Atel'1 + B:, 1'2h)/aJ· 1 (55)

B 2 =bC 1 , C 2 =fJpo/h (56)

where fJ po is given by the first of equations (45) and b is defined by relation (48).
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Having the solution for the basic variables f3 and 'P the stress resultants and couples
as well as the stress distribution are readily obtained through equations (5), (6), (8) and (l).

4. NUMERICAL EXAMPLES

Some insight into the thermoelastic behavior of composite cylindrical shells will be
gained by considering the following three special cases of the thermal field given by
equation (33):

Case I

g = 0, T = T? = T; = T~ = Te = 200°C (57)

Case II

g = 0, T? = T; = 100°C, T~ = 'Fe = 200°C (58)

Case III

g = 480, T? = 100°C, T~ = 200°C. (59)

Two-layer cylindrical shells were chosen for numerical evaluation, being composed
of various combinations of homogeneous sheets with the following thermo-elastic pro­
perties:

Type EedEo E••/Eo Ec./Eo ae/ao a./ao K,/K o

a I 0·5 0.3 0.5 1 0·1
ii 0·5 1 0·3 1 0·5 0·1
b 5 0'6 0·7 0·25 1·5 0·7
b 0·6 5 0·7 1·5 0·25 0·7

for the orthotropic layers a, a, b, band

E
Type ---/Eo a/ao K/Ko1- v2

C 1 0·3 0·5 0·5
d 5 0·14 0·5 0·1
e 0·6 0·5 0·25 0·1

(60)

(61)

for the isotropic layers c, d, e. The constants with the subscript "0" have the following
numerical values:

K o = 1 cal .
(sec)(cm2WC/cm)

(62)

Note that the thermo-elastic properties of the orthotropic material a is obtained
from those of a by interchanging the subscripts ~ and e. The same holds for the materials
band b.
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Of the homogeneous orthotropic layers a, it, b, b4 homogeneous shells and 12 two­
layer shells were evaluated and the results for the highest stresses in the axial and cir­
cumferential directions are summarized in Tables 1,3 and 5. Of the homogeneous isotropic
layers C, d, e 3 homogeneous shells and 6 two-layer shells were analyzed and the values
of the extremal stresses are given in Tables 2, 4 and 6. For all homogeneous shells, denoted
by Nos. 1-4, and 17-19, h = 1cm whereas for all two-layer shells, Nos. 516 and 2025.
hI = h2 0.5 em. The radius of the reference surface for all shells considered is ro = 1.1

400 em. As shown in Fig. 3, for the external layer -hI < , < 0 and for the internal layer
o < , < h2 . For brevity we designate by "1 ", "2", "3" and "4" the fibers located at
, = - hI, 0; 0, h2 , respectively. Note that locations "2" and "3" refer to the external
and internal layers, respectively, at both sides of the reference surface ( 0, (see Fig. 5).

Using this notation the ( and Z coordinates of the fibers where the stresses occur are
given in the parentheses following their numerical values, as indicated in Tables 1·6.
For each shell the first line refers to the external layer whereas the second line refers to
the internal layer. Thus, e.g. shell NO.5 in Table 1 is composed of an external layer a and
internal layer b whereas for shell No.6 the order of these layers is reversed. The largest
compressive axial stress in layer a of shell No. 5 is T~ - 3455 kg/cm 2 occurring at
(= -O'5cm,z = 0;forsheIlNo.6thisvaluedropstoT¢ -930kg/cm2 at( = t·O·5cm,
Z = 34 cm when a is now the external layer. The numerical results were obtained by using
an Elliott 503 digital computer.

5. DISCUSSION OF RESULTS

The results for the extremal stresses in the considered composite cylindrical shells,
as summarized in Tables 1-{), are noted for the following features:

(a) Layer inversion effect

The reversal of layer location, or more generally the shell heterogeneity in the thickness
direction, have a major effect on the stress field obtained. Consider shells Nos. 9 and 10
in Table ·1, the axial compressive stress in layer bof shell No.9 is 40 per cent of the corre­
sponding stress in Shell No. 10, whereas for the circumferential direction this value goes up
to 58·5 per cent. For the same shells subject to the thermal field II we get from Table 3 that
the axial compressive stress in layer&ofshelt No.9 is only 11·2 per cent of the corresponding
stress in shell No. 10, whereas for the 8-direction it goes up to 29,5 per cent. Regarding the
thermal field III it is seen from Table 5 that the axial compressive stress in layer aof shell
No.8 is 31·6 per cent of the corresponding stress in shell No.7, whereas in the circumfer­
ential direction this value goes up to 42·7 per cent. The axial tensile stress in layer b of shell
No.8 is 62·6 per cent of the corresponding stress in shell No.7. (See Fig. 5). As for the shells
composed of isotropic layers mention is made to shell No. 23 in Table 6 where in layer e
the tensile stress is 43-4 per cent of the corresponding stress in shell No. 22.

(b) Efficiency of lamination
Some measure to the efficiency of lamination may be achieved by comparing the

stresses obtained for a two-layer shell with those developed in the corresponding homo­
geneous shells. So, e.g. shell No. 9 (Table 3) composed of layers a, b is compared with
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TABLE 1. ORTHOTROPIC LAYERS. CASE I

" '0 To
No. Layers (kg/cm2

) (kg/cm2
) (0C)

a 461 (1,30) ~2218 (1,0) 90 (1,46) -1485 (1,0)
200

a 2218 (4,0) -461 (4,30) 35 (3,58) -820 (3,0)

a 130 (1,20'9) -1109 (1,0) 90 (1,34) -1485 (1,0)
2 200

a 1109 (4,0) -230 (4,20·9) 35 (3,42) -820 (3,0)

b 1711 (1,42) -8232 (1,0) 157 (1,66) -2658 (1,0)
3 200

b 8232 (4,0) -1711 (4,42) 65 (3,86) -1506 (3,0)

b 285 (1,14'7) ~1372 (1,0) 214 (1,22) -3692 (1,0)
4 200

b 1372 (4,0) -285 (4,14·7) 90 (3,30) -2092 (3,0)

a 265 (1,38) -3455 (1,0) 260 (1,58) -1856 (1,0)
5 200

b 7788 (4,0) -3044 (3,0) -1932 (3,0)
b 4177 (2,0) -6654 (1,0) 7 (1,50) -2438 (1,0)

6 200
a 2322 (4,0) -930 (4,34) 236 (3,70) -807 (3,3-9)

a -2421 (1,0) 589 (1,50) -2273 (1,0)
7 200

b 7716 (4,0) -4049 (3,0) -2073 (3,0)

b 5577 (2,0) -6188 (1,0) -2372 (1,0)
8 200

a 894 (4,0) -831 (4,26) 620 (3,54) -1027 (3,2'7)

a 1026 (2,0) -1233 (1,0) -1190 (1,0)
9 200

b 781 (4,0) -907 (4,16'8) 613 (3,34) -2771 (3,0'6)
b -2269 (1,0) 506 (1,34) -4738 (1,0)

10 200
a 2720 (4,0) -682 (3,0)

a 454 (1,15·7) -908 (1,0) -1365 (1,0)
11 200

b 1020 (4,0) -479 (4,15'8) 385 (3,30) -2476 (3,0)
b 56 (1,16'8) -1556 (1,0) 375 (1,30) -3907 (1,0)

12 200
a 1444 (4,0) -34 (4,16'9) 46 (4,0) -631 (3,0'8)

a 715 (2,0) -1575 (1,0) -1292 (1,0)
13 200

a 1002 (4,0) -519 (4,22) 266 (3,46) -915 (3,1'4)
a 32 (1,26) -1669 (1,0) 272 (1,42) -1821 (1,0)

14 200
a 2241 (4,0) -141 (4,26) -834 (3,0)

b 5762 (2,0) -5272 (1,0) -2244 (1,0)
15 200

b 417 (4,0) -1441 (4,18·1) 1246 (3,38) -3209 (3,1'5)
b -3271 (1,0) 1047 (1,42) -5908 (1,0)

16 200
b 8126 (4,0) -2908 (3,0) -1913 (3,0)
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TABLE 2. ISOTROPIC LAYERS. CASE I

-r~ to 7;,
No. Layers (kg/em 2

) (kg/em") (TI
------ ---------

c 340 (1,26) -1652 (I. 0) 74 (1,42) 1406 (I. Oi
17 200

c 1652 (4,0) -340 (4,26) 39 13,50) --910 (3,01

d 1754 (1,26) - 8575 (1,0) 274 II, 461 6102 (I, Ol
18 200

d 8575 (4,0) -1754 (4,26) 208 (3,50) -4902 (3, OJ

e 93 (1,26) -450 II. OJ 30 (I. 38) -450 11,01
19 200

e 450 (4,0) -93 (4,26) 10 (3,50) - 225 13,0)

c 536 (1,22) -2922 (1,0) 100 (I. 34) -1787 11,0)
20 200

d 7105 (4,0) - 3353 (3,0) 200 (3,42) - 5371 (3,42)

d 3619 (2,0) -6839 (1,0) 297 (1,38) -5859 (Ull
2\ 200

c 2655 (4,0) -623 (4,20'9) 39 (3.46) - 782 (3,3)

c -1358 (1,0) -1461 (1,01
22 200

e 1129 (4,0) 340 (4.0) --10 (3.22)

e 477 (1,26) -4\7 (1,0) 360 (1,38) 433 (I. 01
23 200

c 646 (4,0) -528 14,26) -860 (3,01

d 4048 (2,0) -6787 (1,0) -5852 (1.01
24 200

e 2020 (4,0) -43 (4,19-6) 785 (4,0)

e 710 (1,22) -1602 (1,0) 498 (1,26) -1026 (I, OJ
25 200

d 6370 (4,0) -4466 (3,0) - 5527 (3,Oj

shell NO.1 made of material a and with shell No.4 made of material b. All three shells
have the same geometry and are subject to the same thermal field and boundary conditions.

It is found that the axial tensile and compressive stresses in layer a of shell No. 9 is
36·3 per cent and 58 per cent, respectively of the corresponding stresses in shell No. L
whereas for layer b these values are 42·5 per cent and 17·1 per cent of the corresponding
stresses in shell No.4. The circumferential tensile and compressive stresses in layer bof shell
No, 9 is 57 per cent and 36·7 per cent of the corresponding stresses in shell No.4. The
reduction in the circumferential compressive stress in layer a of shell No.9 is not as high as
the previous figures and stands on 81,8 per cent of the corresponding stress in shell No.1.

Regarding composite isotropic shells we note, e.g. that the highest stress (compressive)
in layer c of shell No, 23 (Table 6) is 49·5 per cent of the highest stresses (tensile and com­
pressive) in shell No. 17,

(c) Location ofextremal stresses
For the homogeneous shells Nos. 1--4,17-18 the maximum tensile stresses occur in

the (-direction at the inner fibers "4" whereas the highest compressive stresses in the
(- and 8-directions appear at the outer fibers" 1", all at the fixed edge z = O.

Regarding composite orthotropic shells it is observed that maximum tensile stresses may
occur at fibres "2" (( = 0, z = 0), as in layer b of shell No.8 (Tables 1,3 and 5). Furthermore,
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TABLE 3. ORTHOTROPIC LAYERS. CASE II

t~ to To
No. Layers (kg/cro2

) (kg/cro 2) (OC)

a 0 (2,0) -2064 (1,0) 26 (2,58) -1439 (1,0)
1. 150

a 2064 (4,0) 0 (3,5-6) 342 (4,74) -615 (3,0)

a 0 (2,4-9) -1157 (1,0) 27 (2,42) -1514 (1,0)
2 150

a 1157 (4,0) 0 (3,0'5) 417 (4,50) -615 (3,0)

b 133 (1, 42) -7324 (1,0) 49 (2,86) -2531 (1,0)
3 150

b 7324 (4,0) -133 (4,42) 569 (4,102) -1129 (3,0)

6 0 (2,0) -1566 (1,0) 68 (2,30) -3919 (1,0)
4 150

6 1566 (4,0) 0 (3,0'2) 1193 (4,34) -1569 (3,0)

a -2828 (1,0) 223 (2,70) -1668 (1,0)
5 112

b 5386 (4,0) -1813 (3,0) 1698 (4,86) -1101 (3,0)
b 3471 (2,0) -6152 (1,0) -2367 (1,0)

6 187
a 2624 (4,0) -490 (3,26) 674 (4,78) -781 (3,3-9)

a -2077 (1,0) 496 (2,58) -2066 (1,0)
7 1\2

b 5423 (4,0) -2612 (3,0) 6 (4,14'5) -1213 (3,0)
b 4638 (2,0) -5549 (1,0) -2283 (1,0)

8 187
a 1235 (4,0) -604 (3,16'4) 1069 (4,62) -994 (3,2'7)

a 751 (2,0) -1197 (1,0) -1179 (1,0)
9 112

b 664 (4,0) -268 (4,16'8) 681 (4,38) - 1437 (3,0'6)
6 -2383 (1,0) 325 (2,38) -4872 (1,0)

to 187
a 3094 (4,0) 518 (4,0) -693 (3,0)

a 233 (2,5'2) -984 (1,0) -1410 (1,0)
11 112

6 830 (4,0) -67 (3,0) 617 (4,38) -- 1255 (3,0)
6 -1708 (1,0) 132 (2,34) -4085 (1,0)

12 187
a 1820 (4,0) 682 (4,0) -651 (3,0'8)

a 550 (2,0) -1499 (1,0) -1269 (1' 0)
13 150

a 1049 (4,0) -202 (3,15'1) 553 (4,54) -682 (3, 1-4)
a -1629 (1,0) 205 (2,50) -1798 (1,0)

14 150
a 2114 (4,0) -73 (3,0) 224 (4,0) -637 (3,0)

b 4267 (2,0) -4324 (1,0) -21\1 (1,0)
15 150

6 744 (4,0) -897 (3,10'6) 1693 (4,42) -2410 (3,1'5)
I) -3163 (1,0) 1066 (2,46) -5782 (1,0)

16 150
b 7478 (4,0) -2782 (3,0) 294 (4,0) -1519 (3,0)
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TABLE 4. ISOTROPIC LA VERSo CASE II

[,
[II "l"

No. Layers (kg/em 2
) (kg/em 2

) ITI
---------- ----_._--------- - ---- --------- --

c 0 (2,0) -1564 (1,0) 29 (2,50) -1379 (1,0)
17 150

c 1564 (4,0) 0 13,54) 345 I~, 58) --682 13,0)

d 0 (2,06) -7856 (1,0) 156 (2,50) -6002 (1,0)
18 150

d 7856 (4,0) 0 (3,23) 1552 (4,50) -3676 (3,0)

e 0 (2,2-6) -450 (1,0) 7 (2,50) -450 (1,0)
19 150

e 450 (4,0) 0 (3,0) 117 14,66) -169 (3,0)

c 86 (t,22) -2524 (1,0) -1667 (Ul)
20 183

d 6815 (4,0) -3453 (3,0) 1566 (4,46) -4977 (3,0)

d 3620 (2,0) -6549 (t,O) 1085 (2,42) - 5819 (1,0)
21 117

e 2298 (4,0) -145 14,20'9) 341 (4,54) -372 (3,3)

c 28 (2,0) -1433 (t,O) -1513 (1,0)
22 133

e 1008 (4,0) 392 (4,0)

e 217 (1,26) -426 (1,0) 177 12,50) -438 (LO)
23 167

e 837 (4,0) -553 (3,0) 331 (4.0) -812 (3,0)

d 4256 (2,0) -6520 (1,0) 1066 (2,42) - 5815 (1,01
24 109

e 1638 (4,0) 707 (4,0)

e 415 (t,22) -1309 (t,O) 257 11,26) - 879 (t,OI
25 191

d 6149 (4,0) -4521 (3,0) 1203 (4,46) 5312 (3,0)

the highest tensile stresses appear at fibers "3" (( = 0), as in layer bof shell No. 15 (Tables 1
and 5) at a distance z of about /0 of the shell radius. Shell No.9 (Table 5) is noted as the
maximum tensile stress in its layer a occurs at the outer fibers "1". Similar observations
hold for the compressive stresses, as well as for two-layer isotropic shells.

(d) Comparison of thermal cases I, II and II I

It is noted that for the thermal fields denoted as "case I" and "case II" the constant
inner temperature Ii is equal to the inner temperature of case III, at ~ =x; and ~ = 0,
respectively.

Consequently, the comparison of the results for case III with those of cases I and II
may have some bearing on the thermo-elastic edge effect of the semi-infinite composite
shells under consideration.

For the homogeneous shells Nos. 1-4 and 17-19, it is seen that the stresses for case I
approach from below the results for case III. The stress level in case II is also lower than
the one of case III, but there are differences between the results for these two thermal
fields. In particular we note that for shell No. 18 the tensile axial stress in Table 6 does
not exist in Table 4.
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TABLE 5. ORTHOTROPIC LAYERS. CASE III

f~ fa To
No. Layers (kg/cm2

) (kg/cm 2
) ("q

a 461 (1,30) -2250 (1,0) 90 (1,46) -1495 (1,0)
150

a 2250 (4,0) -461 (4,30) 265 (4,0) -798 (3,2'7)

a 230 (1,20'9) 1145 (1,0) 90 (1,34) -1507 (1,0)
2 150

a 1145 (4,0) -230 (4,20'9) 277 (4,0) -788 (3,2-3)

b 1710 (1,42) -8297 (1,0) 157 (1,66) -2.668 (1,0)
3 150

b 8297 (4,0) 1710 (4,42) 409 (4,0) -1479 (3,3-1)

b 284 (1,15) 1455 (1,0) 211 (1,22) -3789 (1,0)
4 150

b 1455 (4,0) -284 (4,15) 651 (4,0) -1976 (3,1-9)

a 265 (1,38) 3732 (1,0) 260 (1,58) -1940 (1,0)
5 112

b 7646- (4,0) -2943 (3,0) 317 (4,0) -1773 (3,2'3)

b 3684 (2,0'9) -6143 (1, Q- 1) 7 (1,54) -2366 (1,0·I)
6 187

a 2618 (4,0) -930 (4,34) 376 (4,0) -807 (3,4)

a -2635 (1,0) 589 (1,50) -2401 (1,0)
7 112

b 7762 (4,0) -4231 (3,0) 334 (4,0) -1854 (3,1-9)

b 4859 (2, Q-8) 5518 (1,0'3) -2278 (1,0'3)
8 187

a 1220 (4,0) 831 (4,26) 619 (3,54) -1025 (3,2-9)
a 1010 (1,17-6) 1216 (1,0) -1185 (1,0)

9 112
b 680 (4,0) -906 (4,17'2) 613 (3,34) -2645 (3,2'6)

b -2240 (1,0) 506 (1,34) -4704 (1,0)
10 187

a 2908 (4,0) 462 (4,0) -685 (3,0)
a 453 (t,16'1) 1044 (1,0) -1446 (1,0)

11 112
b 896 (4,0) -478 (4,16-2) 383 (3,30) -2283 (3,2-3)

b 55 (1,17) 1489 (1,0) 376 (1,30) -3829 (1,0)
12 187

a 1621 (4,0) 33 (4,17-I) 562 (4,0) -654 (3,0)
a 642 (t,26) 1506 (1,0) -1272 (1,0)

13 150a 1054 (4,0) -517 (4,22) 265 (3,46) -899 (3,2'8)
a 32 (1,26) 1749 (1,0) 272 (1,42) -1869 (1,0)

14 150
a 2284 (4,0) 141 (4,26) 275 (4,0) -782 (3,2)

b 4857 (2,1'1) -4427 (1,0-4) -2126 (1,0'4)
15 150

b 744 (4'0) 1440 (4,18'4) 1244 (3,38) -3154 (3,2-7)
b 3420 (1,0) 1047 (1,42) -6082 (1,0)

16 150
b 8412 (4,0) 3387 (3,0) 425 (4,0) -1724 (3,1-1)
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TABU 6. ISOTROPIC LAYERS. CASE III

L I" 11

No. Layers (kg/c"m 2 ) (kg/cmll I'C)
-- -----

c 341 (1,26) -1683 (\,0) 74 (1. 42) 1415 (1. 0)
17 150

c 1683 (4. OJ -341 (4,26) 50 (4.0) -879 (3, :'4)

d 1756 (1,26) -8711 (1. 0) :'74 (1.46) 6122 (\.0)
18 150

d 8711 (4,0) - 1756 14. :'6) 209 13.50) 473:' (3. :'4)

c 93 (1,26) 460 11.0) 31 11.38) -455 11. 01
19 150

c 460 (4,0) - 93 (4.261 118 (4,0) -218 13.25.1
c 535 (1,22) -:'816 I\. 0) 100 (1,34) -1755 lUll

20 183
d 7544 (4,0) -3818 (3,01 199 (3,42) - 5183 13,111

d 3941 (2,0) -7190 (1,0) 297 (1,42) - 5909 (I, OJ
21 I 17

c 2554 (4,0) .- 622 14.20'9) 311 (4,0) -775 (3,381

c 45 (2,0) -1552 (1,01 -1596 (1,01
21 133

c 1100 (4,0) 437 (4,0) -7 13.31 )

c 477 (1. 26) - 352 (1,02) 360 11,38) -401 (1. (2)
23 167

c 737 (4,0) - 539 (3.0) 261 (4,0) -834 (3.141

d 4814 (2,0) - 7400 (1,0) - 5938 (1. O!
24 109

e 1880 (4,0) -43 14.197) 828 14,0)

e 710 (1,22) -1492 II, 0) 498 11,26) -971 (1,01
25 I'll

d 6815 (4,0) -4952 (3,0) - 5396 (3,05)

Regarding the composite shells considered it is found that the results for case III can
be approximated for many examples by the stress field obtained for case I, however for
other examples case II is more suitable.

It is observed that for some shells the layer inversion effect may vary numerically
when evaluated for the various thermal fields, The same observation also holds for the
location of extremal stresses and efficiency of shell composition.

(e) Distribution of radial displacement, resultants, moments and stresses

The detailed variation of the radial displacement, resultants and couples along shell
generator is shown in Figs. 3 and 4 for shells Nos, 2, 3, 7 and 8 when subject to the thermal
field III. The extremal stresses for these shells are given in Table 5, from which it is clear
that for shell No.8 the lowest stresses are achieved, except for the compressive stresses
of its layer b. (See Fig. 5).

The layer inversion effect and the efficiency of lamination is clearly exemplified by
shell No.8. Figures 3 and 4 show that the results for resultants and moments for the various
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FIG. 3. Variation of radial displacement and stress resultants along shell generator.

shells are considerably different, quantitatively and qualitatively. It is noted that whereas
for homogeneous shells, there is a relatively simple relationship for stresses in terms of
resultants and couples-for heterogeneous shells the cross-thermoelasticity effect, shown
by Stavsky [16], has to be considered. Consequently, it is quite impossible to foresee the
detailed stress distribution just by observing Figs. 3 and 4. E.g. the compressive axial stress
in layer b of shell No.8 is higher by 31 per cent than the corresponding stress in shell No.7
although M ~ for the latter shell is over twice its value for shell No.8, at z = O. The thickness
variation of the stresses at extremal locations are shown in Fig. 5 for shells No.2, 3, 7 and 8.
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FIG. 4. Variation of axial and circumferential moments along shell generator.

6. CONCLUSIONS

The obtained results are remarkable for the following characteristics:

(1) The layer reversal effect was shown to considerably affect the stress field developed
and its level. For a certain shell the stress went down to about one tenth of the
corresponding stress for the very same composite shell when the order of the layers
was reversed.

(2) The combined action of the layers composing the considered cylindrical shells
was shown to provide, in many cases, a lower stress field than obtained for the
individual constituents when acting as homogeneous shells.

(3) In view of Stavsky's [16] cross-thermoelasticity effect no clear indication of the
detailed stress distribution can be obtained by observing the results for stress
resultants and moments. Recurrence must be made to full coupled relations for
stress components in terms of resultants and couples, as given by equation (28) of
Ref. [16].
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A6cTpaKT-PewalOTclI ocecHMMeTpH'IeCKHe JIHHeHHble KBa3H-CTaTH'IeCKHe TepMoynoyrHe ypaBHeHHII JJ,JIII
COCTaBHblX OpToTponHblx UMJIMHJJ,pM'IeCKHX o60JIO'leK B 3aMKHyToM BHJJ,e, JJ,JIII rpaHH'IHblX YCJIOBHH
3allleMJleHHOfO TMna.

OnpeJJ,eJI}!eTCII CJIy'laH nOJIy6ecKoHe'lHoH 060JIO'lKH B KOHe'lHOM BHJJ,e. II\cCJIeJJ,YlOfC}! pa3Hbie KOM6H­
HaUHH CJIOMCTbIX o60JIO'leK. OKa3bIBaeTC}!, 'ITO II HeOJJ,HopOJJ,HOCTb 060JIO'leK, HJIH 3¢l¢leKT 3aMeHbl CJIO}!, B
CJIy'lae JJ,ByXCJIOHHbIX 060JIO'leK, MOJKeT 3Ha'lHTeJIbHO nOBJIH}!Tb Ha rrOJIy'leHHoe nOJIe HarrpllJKeHHH MJIH ero
YPOBeHb; 21 CMewaHHoe JJ,eHcTBMe CJIOJKeHHbIX CJIOeB rrpeBblwaeT CyMMy MHJJ,HBHJJ,yaJIbHbIX CBOHCrB, H
Bbl3blBaeT, B 60nblllMHcTBe CJI'IaeB, HOBylO xapaKTepHcTHKy, He)),OCTHJKI1MYIO COCTaBJIlllOllll1MH B cny'lae
Kor.lIa OHH pa60TalOT KaK O)),HOpOJJ,Hble 060JIO'lKH; 31 norrepe'lHo-ynpyrHH 3¢l¢leKT Bb13bIBaeTCII pacnpe­
)),erreHHeM HarrplIJKeHMH JJ,JIII paCCMaTpHBaeMblX COCTaBHblX o60JIO'leK.


